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• A response surface modeling technique
with differential method (RSM-DM)
was developed.

• RSM-DM well resolved the nonlinear
quantification issue of brute force
method.

• RSM-DM can reproduce accumulative
contribution of precursor emissions to
PM2.5.

• This innovative method was applied to
investigate PM2.5 source contributions
in PRD.
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Identifying and quantifying source contributions of pollutant emissions are crucial for an effective control strat-
egy to break through the bottleneck in reducing ambient PM2.5 levels over the Pearl River Delta (PRD) region of
China. In this study, an innovative response surfacemodeling techniquewith differential method (RSM-DM) has
been developed and applied to investigate the PM2.5 contributions frommultiple regions, sectors, and pollutants
over the PRD region in 2015. The new differential method, with the ability to reproduce the nonlinear response
surface of PM2.5 to precursor emissions by dissecting the emission changes into a series of small intervals, has
shown to overcome the issue of the traditional brute forcemethod in overestimating the accumulative contribu-
tion of precursor emissions to PM2.5. The results of this case study showed that PM2.5 in the PRD regionwas gen-
erally dominated by local emission sources (39–64%). Among the contributions of PM2.5 from various sectors and
pollutants, the primary PM2.5 emissions from fugitive dust source contributedmost (25–42%) to PM2.5 levels. The
contributions of agriculture NH3 emissions (6–13%) could also play a significant role compared to other sectoral
precursor emissions. Among the NOX sectors, the emissions control of stationary combustion source could be
most effective in reducing PM2.5 levels over the PRD region.
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1. Introduction

Over the past decade,fine particularmatter or PM2.5, has drawn sub-
stantial attention in China. The Pearl River Delta (PRD) region has taken
the lead in PM2.5 control over China in recent years. The annual mean
PM2.5 concentration has reached the second-level limit of the National
Ambient Air Quality Standards (NAAQS) of China (35 μg m−3) consis-
tently from 2015 to 2018 (GDEEP, 2016; GDEEP, 2017; GDEEP, 2018;
GDEEP, 2019) but it has nowmet a bottleneck for the trend of continu-
ous decline. The effective and focused control strategies are urgently
needed to further reduce PM2.5 concentration over the PRD region.
PM2.5 is a complex mixture of the primary compositions directly emit-
ted from various sources together with the secondary components con-
verted from gaseous precursors, which are produced from both local
emissions and regional transport. Therefore, identifying and quantifying
the emission contributions of multiple pollutants frommultiple regions
and sectors to PM2.5 are the preconditions for an effective PM2.5 control
strategy over the PRD region.

Currently, PM2.5 source contribution analysis or apportionment
methodsmainly include receptor models and photochemical air quality
model-based techniques (Wang et al., 2016a; Xie et al., 2016), as sum-
marized in Table S1 with their strengths and limitations. Receptor
models, based on measurement from ambient air by the receptor,
e.g., Positive Matrix Factorization (PMF) (Paatero and Tapper, 1994)
and Chemical Mass Balance (CMB) (Watson et al., 1984), have been
broadly applied mainly because of their simplicity (Bi et al., 2011;
Wang et al., 2009). However, receptor models are not capable of
distinguishing the contributions from local and regional transportation
between or beyond the on-site measurement networks; and this meth-
odology is difficult to identify sources of secondary components (Li
et al., 2018). On the other hand, photochemical air quality models are
powerful in simulating air quality in different spatial and temporal
scales and providing source-receptor relationships for secondary spe-
cies (Chen et al., 2018; Zhang et al., 2017). There are a number of
PM2.5 source apportionment techniques developed based on photo-
chemical air quality models. One category is the sensitivity analysis,
e.g., brute force method (BFM) and decoupled direct method (DDM)
(Dunker, 1984; Ivey et al., 2015; Koo et al., 2009). However, the nonlin-
ear impact of emission sources on PM2.5 cannot be quantified properly
by BFM; and the DDM is difficult to capture the nonlinearity under
large emission perturbations. A higher-order DDM (HDDM) (Hakami
et al., 2003) was developed sequentially to handle the nonlinearity.
Nevertheless, the HDDM is not reliable for predicting the concentration
response to simultaneous emission changes of multiple (N3) variables
(Dunker et al., 2002; Hakami et al., 2004). Another category is the
tagged tracer technique, e.g., the Particulate Source Apportionment
Technology (PSAT) embedded in the Comprehensive Air Quality
Model with Extensions (CAMx) (Kim et al., 2017; Li et al., 2015; Wang
et al., 2017b; Wen et al., 2016) and the Integrated Source Apportion-
ment Model (ISAM) in the Community Multi-scale Air Quality model
(CMAQ) (Chang et al., 2019; Chen et al., 2017; Napelenok et al., 2014).
Although the results of tagged tracer technique are reliable due to the
full tracking of the reaction process, the use of photochemical air quality
models will be resource-intensive and often cannot meet the require-
ment of time and cost constraints for supporting policy analysis (Xing
et al., 2011). To overcome the issue, a series of efficient concentration
response methodologies, starting with the response surface model
(RSM) (Wang et al., 2011; Xing et al., 2011), extended RSM (ERSM)
(Xing et al., 2017; Zhao et al., 2015; Zhao et al., 2017) and RSM/ERSM
with polynomial functions (pf-RSM/pf-ERSM) (Xing et al., 2018) have
been developed. RSM is a reduced-form prediction model, which builds
the relationship between photochemical air quality model outputs and
emission inputs using advanced mathematical algorithms. In RSM, the
pollutant concentration can respond dynamically to multiple variables
under a wide range of emissions perturbation in a real-time manner
with the nonlinear characteristicswell captured. Therefore, the analyses
of source contributions can be provided by RSMwith BFM in unlimited
control scenarios in a near real-time manner (You et al., 2017). How-
ever, the accumulative contribution of each source reduction provided
by BFM will generally be higher than the response to all sources reduc-
tion due to the nonlinear relationship between PM2.5 and precursor
emissions (Burr and Zhang, 2011).

Aimed at addressing aforementioned issues, an innovative pf-ERSM
with differentialmethod (DM),with the ability to reproduce the nonlin-
ear response surface of PM2.5 to precursor emissions by dissecting the
emission changes into a series of small intervals, was developed to im-
prove the accuracy for source contribution analysis of precursor emis-
sions to PM2.5. Meanwhile, the following additional two tasks were
carried out in this study: (1) a sectoral linearity (SL) technique, implying
the linear relationship between total emissions (i.e., the sum of sectoral
emissions) of precursors and sectoral ones, was coupled in pf-ERSM (re-
ferred to as “pf-ERSM-SL” hereafter) to further investigate the contribu-
tions of precursor emissions from multiple sectors; (2) the RSM with
BFM was kept to conduct source contribution analysis of primary
PM2.5 emissions to PM2.5 (Long et al., 2016). Finally, the pf-ERSM-SL
with DM and BFM was applied to quantify the PM2.5 contributions
from multiple regions, sectors, and pollutants over the PRD region in
2015.

2. Methodology

Fig. 1 schematically showed the operation process of PM2.5 source
contribution analysis based on pf-ERSM-SL with DM and BFM in the
PRD region. Firstly, control factors were selected referring to control
policy objectives, and then three control matrices consisting of three
sets of emissions control scenarios parameterized by control factors
were designed. Secondly, an integrated modeling system combining
WRF version 3.9.1 and CMAQ version 5.2 (WRF-CMAQ) was used to
conduct air quality simulations under the three kinds of control scenar-
ios for the PRD region in 2015. Thirdly, the pf-ERSM-SL including three
relationships was developed based on the simulation results by WRF-
CMAQ. Then validation was done to examine the performance of pf-
ERSM-SL. Finally, DM and BFM were used to analyze the emission con-
tributions of precursor and primary PM2.5 from multiple regions and
multiple sectors to the PM2.5 concentrations predicted by pf-ERSM-SL
in receptors, respectively. Further details of the process were provided
below and in the Supplementary Material.

2.1. WRF-CMAQ configuration

Three nested domains denoted as d01, d02, and d03 (Fig. 2a) were
used for the WRF-CMAQ simulation system. The outermost domain
(d01) with grid resolutions of 27 km × 27 km covered most of China
and some other parts of Asia. The middle domain (d02) with grid reso-
lutions of 9 km × 9 km aimed to cover southeastern China, including
Guangdong province. The innermost domain (d03) covering the
whole PRD region with grid resolutions of 3 km × 3 km was the focus
of this study (Fig. 2b). Vertically, twenty sigma layers from the surface
to the tropopause were set for all domains.

TheWRF model provided the meteorological input data files for the
CMAQ model. The NCEP FNL (Final) Operational Global Analysis data
(downloaded from http://dss.ucar.edu/datasets/ds083.2/) were used
to drive the WRF model. Output files of the WRF model were post-
processed for the CMAQ model using Meteorology Chemistry Interface
Processor (MCIP) program. The Carbon Bond Mechanism (CB6) with
aqueous and aerosol extensionswas chosen for the gas-phase chemistry
module and the AREO5 aerosol mechanismwas selected for the aerosol
module in the CMAQmodel. The initial and boundary conditions for the
CMAQ simulation on d01 were generated from default profiles in the
CMAQ model while that for d02 and d03 were generated from simula-
tion results on d01 and d02, respectively. A 5-day spin-up period was
used to reduce the influence of initial conditions on modeling results.

http://dss.ucar.edu/datasets/ds083.2/


Fig. 1. The operation process of PM2.5 source contribution analysis based on pf-ERSM-SL with DM and BFM in the PRD region.
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The anthropogenic emission inventories for the outer and middle do-
mains were provided by Tsinghua University (Ma et al., 2017). The
emission inventory of the innermost domain was from 2015-based
emission inventory in Guangdong province, which was developed by
the joint research team of Tsinghua University and South China Univer-
sity of Technology. The biogenic emissions were calculated by the
Model of Emissions of Gases and Aerosols from Nature (MEGAN)
(Guenther et al., 2006).
Fig. 2. (a) The three nested domains with 27 km, 9 km, and 3 kmused inWRF-CMAQ simulation
The red marks are the locations of the observation sites, among which the ones marked by pen
colour in this figure legend, the reader is referred to the web version of this article.)
The innermost simulation area was divided into 7 regions (Fig. 2b),
including Shunde (A, SD), Foshan (B, FS), Guangzhou (C, GZ),
Zhongshan (D, ZS), Jiangmen (E, JM), Dongguan and Shenzhen (F,
DG&SZ), and other regions (G, OTH). The local national-controlled air-
monitoring sites in each of 6 regions (except OTH) were chosen to rep-
resent thewhole of the region for source contribution analysis. The sim-
ulation periods were January, April, July, and October in 2015,
representing winter, spring, summer, and fall.
; (b) The definition of seven regions in the innermost domain, denoted by different colors.
tagrams were chosen to evaluate PM2.5 simulation. (For interpretation of the references to
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2.2. Pf-ERSM-SL development

The pf-ERSM-SL using the pf-ERSM coupledwith the SL technique to
build the response of PM2.5 to precursor emissions from multiple re-
gions and sectors. The mathematical fitting process of pf-ERSM-SL was
shown in Fig. S1. The pf-ERSM in this study referred to the modified
one which was proved to have a better performance by our research
team. The detailed methodology had been described in another paper
(Fang et al., 2020). In this Sect., some key components of the modified
pf-ERSM were given synoptically, and then the SL technique was intro-
duced in detail.

The effects of total emissions of precursors (referred to as “total
precursor emissions” hereafter) frommultiple regions on PM2.5 con-
centrations in receptors in the modified pf-ERSM are from two path-
ways. One is sum of the single effect of total precursor emissions
from every single region (denoted as “SR”). Another is the interre-
gional effects among multiple regions (denoted as “IR”). Suppose
the receptor region is A and the source region is r (r = A, …, G).
The response of PM2.5 concentration at receptor A can be represented
as follows:

ΔConc PM2:5½ �A ¼
X

r¼A;⋯;G

ΔConc PM2:5½ �SRr→A

� �
þ ΔConc PM2:5½ �IRA ð1Þ

where ΔConc[PM2.5]A is the changes of PM2.5 concentration compared
with the base case at receptor A. ΔConc[PM2.5]r→A

SR and ΔConc[PM2.5]AIR

represent the changes of PM2.5 concentration at receptor A caused by
SR and IR, respectively.

SR and IR were quantified by a series of polynomial functions,
expressed as Eq. (2). The polynomial functions were fitted by a set of
randomly generated emissions control scenarios (Table S2).

ΔConc PM2:5½ � ¼
Xj

i¼1

Xi∙ E NOX½ �ð Þai ∙ E NH3½ �ð Þbi ∙ E SO2½ �ð Þci ∙ E VOC½ �ð Þdi ð2Þ

where ΔConc[PM2.5] is the changes of PM2.5 concentration. E[NOX], E
[NH3], E[SO2], E[VOC] are the change ratios of total NOX, SO2, NH3, and
VOC emissions related to the baseline (i.e., baseline = 0), respectively;
ai, bi, ci, and di represent the nonnegative integer powers of E[NOX], E
[NH3], E[SO2] and E[VOC], respectively; Xi is the coefficient of the term i.

The pf-ERSM only focused on the precursor emissions without
sectoral classification. However, it is necessary to adopt different
emissions reduction ratios for sub-sectors according to the actual sit-
uation in policy-making. To obtain the real-time response of PM2.5 to
sectoral emissions of precursors (referred to as “sectoral precursor
emissions” hereafter), it is crucial to establish the relationship be-
tween total precursor emissions and sectoral ones in the presence
of the relationship between PM2.5 response and total precursor
emissions.
Table 1
Emissions control variables and scenarios selected for linear fitting of total precursor emission

Control
number

Control variable Scenario
number

Scenario details

7 7 variables in each of the 7
regions, i.e.,
(1) NOX/stationary
combustion
(2) NOX/on-road mobile
(3) NOX/others
(4) SO2/stationary
combustion
(5) SO2/others
(6) NH3/agriculture
(7) NH3/others

71 1 base case; 70 scenarios, 10 for each re
scenarios and all sectoral NOX are set to
respectively.
Considering the main emission sectors of precursors and the dif-
ferent impacts of sectoral precursor emissions on PM2.5, NH3 emis-
sion sources were grouped into 2 sectors, i.e., agriculture and other
sources (stationary combustion, industrial process, on-road mobile,
residential); NOX emission sources were classified into 3 sectors,
i.e., stationary combustion, on-road mobile, and other sources (in-
dustrial process, non-road mobile, agriculture); SO2 emission
sources were classified into 2 sectors, i.e., stationary combustion
and other sources (industrial process, on-roadmobile, non-road mo-
bile, agriculture), VOC remained total (stationary combustion, indus-
trial process, on-road mobile, non-road mobile, solvent use, fuel oil
storage, agriculture and residential). Then there were 7 sectoral con-
trol variables of precursors in a single region. The total emissions of
one precursor is equal to the sum of emissions from each sector.
That is to say, there is an apparent linear relationship between the
total precursor emissions and sectoral ones. Therefore 2, 3, and 2
training samples are needed at least for NH3, NOX, and SO2 respec-
tively to fit the linear function. Here we adopted the fixed value sam-
ple, i.e., sectoral variables of one precursor are set to 0 in turn and the
others stay constant, to obtain the training samples. Also, another
one case where all sectoral variables of one precursor are set to 0
and the others stay constant was added to improve the fitting accu-
racy. Then there were 10 training samples in a single region. The con-
trol variables setting and the number of scenarios were shown in
Table 1.

Different from PM2.5, it is known that precursors are all primary pol-
lutants. That is, the response of precursor concentration to the corre-
sponding precursor emissions is linear (Cohan et al., 2005). Therefore,
linear function between the concentration of each precursor and the
total emissions of the corresponding precursor is fitted in region r deriv-
ing from the training samples for pf-ERSM development (Table S2)
firstly.

ΔConc P½ �r ¼ Xr ∙E P½ �r ð3Þ

where P represents one precursor, i.e., NOX, SO2 or NH3.ΔConc[P]r is the
concentration changes of precursor P in region r caused by the total
emission changes of precursor P in region r. E[P]r is the total emissions
change ratio of precursor P in region r. Xr is the coefficient of region r.

Secondly, according to the concentration changes of precursor P in
region r caused by emission changes of precursor P from different sec-
tors in region r deriving from the training samples set in Table 1, the
equivalent total emissions of precursor P of different sectors can be
solved based on Eq. (4) converted from Eq. (3).

E P½ �0r ¼ ΔConc P½ �r Sn=Xr ð4Þ

where E[P]r′ is the change ratio of equivalent total emissions of precur-
sor P in region r. ΔConc[P]r_Sn is the concentration changes of precursor
P in region r causedby the emission changes of precursor P from sector n
in region r.
s to sectoral precursor emissions.

gion, including 4 scenarios where one sectoral NOX is set to 0 for each of the first three
0 for the last scenario, 3 and 3 scenarios generated in the same way for SO2 and NH3,
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Then fit the linear function between the equivalent total emissions
and sectoral emissions of precursor P.

E P½ �0r ¼ ∑m
n¼1Xn∙E P½ �r Sn ð5Þ

where E[P]r_Sn is the change ratio of emissions of precursor P from sec-
tor n in region r. Xn is the coefficient of the sector n.

Thence, for one control scenario of sectoral precursor emissions, it
will first be merged to a control scenario of total precursor emissions
based on Eq. (5). Then the PM2.5 response can be obtained from pf-
ERSM using the merged control scenario as the input.

Moreover, the linear relationship between PM2.5 concentrations and
primary PM2.5 emissions was integrated into the pf-ERSM-SL system as
well to obtain the PM2.5 response to primary PM2.5 emissions frommul-
tiple regions and multiple sectors. The method to develop the relation-
ship between PM2.5 concentrations and sectoral primary PM2.5

emissions is straightforward. Referring to the previous paper (Long
et al., 2016), we predicted PM2.5 response owing to the sectoral primary
PM2.5 emissions changes by simply interpolating between the base case
and a control scenario, where one control variable of sectoral primary
PM2.5 was 0 and the others stayed constant (Table S3).

2.3. Source contribution analysis method

2.3.1. Brute force method
The traditional BFM, inwhich a number of sensitivity simulations are

performed, each with one source eliminated or reduced and the differ-
ences between the results from the sensitivity and baseline simulations
are attributed to the source eliminated or reduced (Burr and Zhang,
2011), is the simplest and easiest sensitivity analysis method (Yamaji
et al., 2012). The advantage of BFM is that it can be applied to any
model input parameters (e.g., emissions, initial condition, boundary
condition and reaction rate) and the output is conceptually easy to ex-
plain and interpret (Itahashi et al., 2015). The inputs only involved
emissions in this study.

The limitation that the computational burden grows rapidlywith the
number of input parameters in this approach is improved by RSM.
When the response of PM2.5 to emissions of pollutants (i.e., primary
PM2.5) is linear, the impact of all primary PM2.5 emission sources to
PM2.5 is the simple addition of the impact of each primary PM2.5 emis-
sion source. Therefore, the contributions of primary PM2.5 emissions
from multiple regions and sectors to PM2.5 can be apportioned by RSM
with BFM accurately. However, if the response is nonlinear, i.e., PM2.5

to precursor emissions, the direct combination of the impact of each
precursor emission source is usually not equal to the impact of all pre-
cursor emission sources (Zhu et al., 2018). As a result, the contributions
of precursor emissions from multiple regions and sectors to PM2.5 can-
not be well quantified by BFM.

2.3.2. Differential method
The interaction terms in the polynomial function for PM2.5 (Eq. (2))

represent the interactions (i.e., nonlinear effects) of precursor emissions
to PM2.5, which results in the deficiency of BFM. DM would be intro-
duced to fill the gap. For convenience in the present discussion, take a
Table 2
Calculation process of the DM for the simplified interaction term.

Intervals x1 x2 y = 2x1x2

1 1 − Δx1 1 2(1 − Δx1)x2
1 − Δx1 1 − Δx2 2(1 − Δx1)(1 − Δx2)

2 1 − 2Δx1 1 − Δx2 2(1 − 2Δx1)(1 − Δx2)
1 − 2Δx1 1 − 2Δx2 2(1 − 2Δx1)(1 − 2Δx2)

k 1 − kΔx1 1 − (k − 1)Δx2 2(1 − kΔx1)(1 − (k − 1)Δ
1 − kΔx1 1 − kΔx2 2(1 − kΔx1)(1 − kΔx2)
simple interaction term y=2x1x2 as an example. The actual total contri-
bution should be 2 assuming that x1 and x2 were reduced from 1 to 0 si-
multaneously. Applying the BFM, i.e., let x1 and x2 decrease from 1 to 0
separately, x1 and x2 contributed 2 respectively. The accumulative con-
tribution was 4 based on BFM, apparent inconsistency with the total
contribution. Instead, DM dissected x1 and x2 changes into a series of
small intervals (e.g., kΔx1 and kΔx2); and then Δy for x1 was obtained
when x1 changed Δx1 but x2 remained unchanged, next Δy for x2 was
obtained when x2 changed Δx2 but x1 remained x1 − Δx1. Repeat the
process until x1 and x2 were 0, as shown in Table 2. Then, the sum of
Δy for x1was the contribution of x1 and the sumofΔy for x2was the con-
tribution of x2. The accumulative contribution of x1 and x2, i.e., the sum
of Δy, equalled to 2 based on DM, consistent with the actual total
contribution.

Fig. 3a showed the diagram of DM and BFM based on the 2-D iso-
pleths of PM2.5 concentration at Guangdongshangxueyuan at GZ to si-
multaneous changes of NOX and NH3 emissions from GZ in October.
Take the scenario where emissions of the two precursors were reduced
by 100% as an example, in the process of the NOX and NH3 emission ra-
tios changing from (1,1) to (0,0), which was indicated by the black dot-
ted line, the total contribution of NOX and NH3 was the PM2.5

concentration difference between (1, 1) and (0, 0). To distinguish the
contributions of NOX and NH3, BFM thought the PM2.5 changes from
(1, 1) to (1,0), i.e., the horizontal black solid line, was the contribution
of NOX emissions and the PM2.5 changes from (1, 1) to (0,1), i.e., the ver-
tical black solid line, was the contribution of NH3 emissions. While, DM
defined the sum of PM2.5 changes along every red solid line and every
blue solid line as the contributions of NOX and NH3, respectively. By
subdividing the NOX and NH3 emissions change, the DM had the ability
to reproduce the nonlinear response surface of PM2.5.

Theoretically, the more the differential intervals were, the more co-
incident the red and blue solid lineswould be to the black dotted line. As
a result, the accumulative contribution of DM can be closer to the total
contribution. However, the more differential intervals would bring
about more computing burden. As shown in Fig. 3b, with the increase
in differential intervals, the computing time increased almost linearly.
It was found that the contribution ratio of NOX and NH3 converged to
a specific value and it hardly changed when the value of differential in-
tervals was N30. Meanwhile, this value of differential intervals (i.e., 30)
was enough to make the accumulative contribution by DM equal to the
total contribution, as shown in Fig. 3c. Moreover, this particular law
would be also applicable to other cases (e.g., simultaneous changes in
emissions of two precursors of other interaction terms, as shown in
Fig. S2). Therefore, the value of differential intervals was determined
as 30 eventually in this study.

The comparison of the case was shown in Fig. 3c. Based on BFM,
the contributions of NOX emissions and NH3 emissions were
0.96 μg m−3 and 2.19 μg m−3, respectively. The essence of BFM was
to consider the influence of one precursor (i.e., NOX or NH3) emis-
sions change alone as the contribution of the precursor. Therefore,
the contribution of one precursor analyzed by BFM actually derived
from the scenario when the particular precursor emissions were
controlled, while the others stayed the same as the base case. Actu-
ally, when NOX emissions and NH3 emissions changed together, the
Δy

2 − 2(1 − Δx1)x2
2(1 − Δx1)x2 − 2(1 − Δx1)(1 − Δx2)
2(1 − Δx1)(1 − Δx2) − 2(1 − 2Δx1)(1 − Δx2)
2(1 − 2Δx1)(1 − Δx2) − 2(1 − 2Δx1)(1 − 2Δx2)

x2) 2(1 − (k − 1)Δx1)(1 − (k − 1)Δx2) − 2(1 − kΔx1)(1 − (k − 1)Δx2)
2(1 − kΔx1)(1 − (k − 1)Δx2) − 2(1 − kΔx1)(1 − kΔx2)



Fig. 3. (a) The diagram of DM and BFM based on the example case. The black solid lines represented the emissions change in BFM, the red and blue solid lines represented the emissions
change in DM, and the black dotted line represented the actual emissions change. (b) The trend of the ratio of contribution of NOX and NH3 and the trend of computing time with the
differential intervals for the case. (c) The comparison of the total contribution and the accumulative contribution solved by BFM and DM for the case. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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total influence was often smaller than the sum of the two single ef-
fects, which mainly attributed to the overlapping effect of two pre-
cursors involved in the formation of ammonium sulfate (e.g., SO2

and NH3) and ammonium nitrate (e.g., NOX and NH3) for PM2.5. It
was evident that the accumulative contribution of BFM
(3.15 μg m−3) was larger than the total contribution (2.33 μg m−3).
For DM, when the value of differential intervals was 30, the contribu-
tion of NOX emissions was 0.42 μg m−3, and the contribution of NH3

emissions was 1.91 μg m−3. The accumulative contribution by DM
(i.e., 2.33 μg m−3) was the same as the total contribution.

3. Results and discussion

3.1. Model performance

3.1.1. Evaluation of WRF-CMAQ
The meteorological observation data at Shundesugang and

Rongguijiedaoban were used to evaluate the performance of WRF
model. Table S4 listed the statistical results of temperature, wind
speed, and relative humidity for January, April, July, and October in
2015, respectively. As a whole, the performance of WRF was very ac-
ceptable. The simulation of wind speed was worse than temperature
and relative humidity. The wind speed was biased high (Normalized
Mean Bias, NMB: 101.02%) in January at Shundesugang. The correlation
coefficients of temperature, wind speed, and relative humidity ranged
from 0.73 to 0.93, from 0.48 to 0.78 and from 0.74 to 0.91, respectively.
These values were within their typical range of meteorological model-
ing studies (Wang et al., 2016b; Yin et al., 2017).

Furthermore, the CMAQ model was evaluated. The time series plots
of hourly simulated concentrations of PM2.5 in January (Fig. S3), April
(Fig. S4), July (Fig. S5), and October (Fig. S6) in 2015 were compared
with the observation data at 7 national controlled air qualitymonitoring
sites in 7 regions for the base scenario. The statistic indicators, i.e., NMB
and R, were summarized. Meanwhile, the scatter plots were shown in
Fig. S7-S10. Temporal variations of PM2.5werewell capturedwith corre-
lation coefficients of 0.40 to 0.75. According to the recommended value
of NMB (b±30%) (Emery et al., 2017), the simulated PM2.5 showed sat-
isfactory performance. These biases can be mainly attributed to the un-
certainties in emissions, meteorological data, boundary condition, and
chemical processes. The model performance statistics indicate that the
WRF-CMAQ system is capable of simulating the major meteorological
parameters and PM2.5 concentration.
3.1.2. Validation of pf-ERSM-SL
The reliability of the pf-ERSM-SL prediction system was tested by

out-of-sample validation, i.e., comparing PM2.5 concentrations pre-
dicted by pf-ERSM-SL with the corresponding CMAQ simulations for
out-of-sample control scenarios. The 40 out-of-sample cases described
in Table S5 were selected for validating the accuracy of predicting the
PM2.5 response to the emissions of precursors (case 1–10), primary
PM2.5 (case 11–15), precursor and primary PM2.5 (case 16–30) and sec-
toral precursors (case 31–40), respectively. The performance of pf-
ERSM-SL was evaluated based on five metrics, namely, mean square
error (MSE), root mean squared error (RMSE), relative root mean
squared error (RRMSE), average relative error (ARE), and correlation
coefficient (CC, i.e., R). ARE was named by mean normalized error
(MNE) in previous RSM researches for out-of-sample validation
(Wang et al., 2011; Xing et al., 2018; Xing et al., 2011; Xing et al.,
2017; Zhao et al., 2015; Zhao et al., 2017). The average and maximal
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values (over out-of-sample cases) of these statistical indices were de-
fined as follows:

aMSE ¼ 1
K
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where K refers to the number of out-of-sample cases.N is the number of
grid cells.Mi andOi are the pf-ERSM-SL-predicted and CMAQ-simulated
value of the ith data in the series of grid cells. and are the average pf-
ERSM-SL-predicted and CMAQ-simulated value over the series of grid
cells.

Table 3 summarized the statistics for the comparison. It showed that
the error of pf-ERSM-SL-predicted PM2.5 was very low with aMSE of
0.00–0.32 μg m−3, aRMSE of 0.04–0.55 μg m−3 and aRRMSE of
0.20–2.46%. The maxMSE was just 0.65 (case 37 of case 31–40 in Octo-
ber). Especially, the aAREswere lower than 2% and aCCswere N0.999 for
4 kinds of out-of-sample cases in 4 months. These values meet the
criteria of the previous study (Xing et al., 2018), implying the PM2.5 con-
centrations of pf-ERSM-SL-predicted and CMAQ-simulated were highly
consistent. It can be seen that the maxAREs were within 0.38% and the
aCCs were all almost 1 for case 11–15 in 4 months, indicating a perfect
Table 3
Comparison of pf-ERSM-SL-predicted and CMAQ-simulated PM2.5 concentrations for out-of-sa

Month Case aMSE
(μg m−3)

maxMSE
(μg m−3)

aR
(μ

January Case 1–10 0.09 0.43 0.2
Case 11–15 0.00 0.02 0.0
Case 16–30 0.07 0.16 0.2
Case 31–40 0.17 0.35 0.4

April Case 1–10 0.04 0.16 0.2
Case 11–15 0.00 0.02 0.0
Case 16–30 0.07 0.19 0.2
Case 31–40 0.14 0.27 0.3

July Case 1–10 0.00 0.01 0.0
Case 11–15 0.00 0.00 0.0
Case 16–30 0.01 0.03 0.1
Case 31–40 0.02 0.02 0.1

October Case 1–10 0.09 0.36 0.2
Case 11–15 0.00 0.02 0.0
Case 16–30 0.16 0.37 0.3
Case 31–40 0.32 0.65 0.5
linear relationship between PM2.5 concentrations and primary PM2.5

emissions. For case 31–40, the maxARE ranged from 0.66% in July to
2.30% in October. That is, the PM2.5 response predicted by the pf-
ERSM-SL system agreedwellwith the PM2.5 concentration changes sim-
ulated by CMAQ due to sectoral precursor emissions changing, implying
the indirect relationship of PM2.5 response to sectoral precursor emis-
sions developed in this study is reliable.

Additionally, Fig. 4 presented the spatial distribution of CMAQ-
simulated and pf-ERSM-SL-predicted PM2.5 concentration and their
delta (pf-ERSM-SL minus CMAQ) for the case with the maximal ARE
from out-of-sample case 31–40 in January, April, July, and October re-
spectively. It can be seen that even in the scenario with the maximal
MNE, the pf-ERSM-SL and CMAQ still made very similar predictions
for PM2.5 in the spatial patterns with the delta ranging from
−0.77 μg m−3 to 3.79 μg m−3, −2.55 μg m−3 to 3.01 μg m−3,
−1.66 μg m−3 to 2.82 μg m−3, −2.98 μg m−3 to 3.46 μg m−3 across
the domain in January, April, July and October respectively.

3.2. Comparison of DMand BFM for accumulative contribution of precursor
emissions to PM2.5

The total contribution and the accumulative contribution of precur-
sor emissions to 4-monthmeanPM2.5 solved by BFMandDMat 6 recep-
torswere compared in the scenarioswhere precursor emissions fromall
regions were controlled by 0%, 25%, 50%, 75% and 100% (Fig. 5). The ac-
cumulative contribution of precursor emissions to PM2.5 solved by BFM
was higher than the total reduction of PM2.5, and that by DMwas almost
the same as the total one, which was found at all reduction ratios in all
receptors. For 100% control of precursor emissions from all regions, the
accumulative contribution to PM2.5 calculated by BFM was
overestimated by 1.76 μg m−3 at SD, 1.54 μg m−3 at FS, 1.57 μg m−3 at
GZ, 1.81 μg m−3 at ZS, 2.00 μg m−3 at JM, and 1.62 μg m−3 at DG&SZ,
about 32%, 20%, 29%, 22%, 20%, and 28% respectively. With the increase
in reduction ratio of precursor emissions, the tendency of accumulative
contribution apportioned by the DM completely matched the trend of
total PM2.5 reduction in all receptors. Note that the growth rate of accu-
mulative contribution by BFM slightly decreasedwith the increase in re-
duction ratio, while that by DM gradually increased. It indicated that an
additional air quality benefit could be achieved if more control mea-
sures were implemented, larger than that expected from linear
extrapolation.

To further compare the difference of BFM and DM, the spatial distri-
bution of the total contribution and the accumulative contribution of
precursor emissions to 4-month mean PM2.5 calculated by the two
methods in the simultaneous 100% reduction of precursor emissions
mple validation.

MSE
g m−3)

aRRMSE
(%)

aARE
(%)

maxARE
(%)

aCC

6 1.11 0.67 1.75 0.9998
5 0.22 0.09 0.36 1.0000
5 1.19 0.75 1.18 0.9997
0 1.76 0.98 1.56 0.9995
0 0.96 0.64 1.37 0.9999
5 0.24 0.11 0.40 1.0000
5 1.36 0.92 1.98 0.9997
6 1.86 1.22 2.07 0.9995
6 0.43 0.25 0.44 1.0000
5 0.40 0.09 0.22 1.0000
0 0.88 0.46 1.16 0.9998
2 0.95 0.41 0.66 0.9999
7 1.16 0.66 1.39 0.9998
4 0.20 0.05 0.38 1.0000
8 1.79 1.04 2.19 0.9995
5 2.46 1.35 2.30 0.9992



Fig. 4. Spatial distribution of CMAQ-simulated and pf-ERSM-SL-predicted PM2.5 concentration and their delta (pf-ERSM-SL minus CMAQ) in the case with the maximal ARE from out-of-
sample case 31–40 in (a) January, (b) April, (c) July, and (d) October (unit: μg m−3).
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was shown in Fig. 6. Similar to the previous conclusion, the accumula-
tive contribution calculated by the BFM was often higher than the
total contribution for most grid cells, and that calculated by the DM
was almost the same as the total contribution across thewhole domain.
The BFM overestimated approximately by 1 μg m−3 to 2 μg m−3 in the
most gird cells and by 2 μg m−3 to 4 μg m−3 in the rest gird cells of 6
central regions (SD, FS, GZ, ZS, JM, DG&SZ). In perspective of the
whole domain, the accumulative contributions of those grid cells with
more precursor emissions, especially more NH3 emissions (Fig. S11),
were often overestimated more. Because the stronger the nonlinearity
of PM2.5 to precursor emissions was, the more the accumulative contri-
bution calculated by the BFM would be overestimated in the gird cell.



Fig. 5. Comparison between the total contribution and the accumulative contribution to 4-month mean PM2.5 solved by the BFM and the DM at 6 receptors in the scenarios where
precursor emissions from all regions were reduced by 0%, 25%, 50%, 75%, and 100%. The x-axis showed the reduction ratio (i.e., 1-emission ratio).
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3.3. Sensitivity analysis of PM2.5

PM2.5 sensitivity, which means the change ratio of PM2.5 concentra-
tion to the change ratio of each pollutant emissions, was quantified fol-
lowing previous studies (Wang et al., 2011; Zhao et al., 2015; Zhao et al.,
2017).

SXa ¼ C�−Cað Þ=C�½ �= 1−að Þ ð13Þ

where SaX is the PM2.5 sensitivity to pollutant X (i.e., NOX, NH3, SO2, VOC,
and primary PM2.5) at its emission ratio a; C ∗ and Ca are PM2.5 concen-
trations in the base case (when the emission ratio of X is 1) and the con-
trol scenario (when the emission ratio of X is a), respectively.

Fig. 7 illustrated the 4-month mean and monthly mean PM2.5 sensi-
tivities to the stepped control of individual pollutant emissions from all
regions. Among all pollutants, the 4-month mean PM2.5 was the most
sensitive to the emissions of primary PM2.5 in all 6 receptors. The
PM2.5 sensitivities to primary PM2.5 emissions remained constant at var-
ious reduction ratios. Unlike primary PM2.5, the PM2.5 sensitivities to
precursors were different at various reduction ratios. Among the pre-
cursors, PM2.5 concentrations were primarily sensitive to the emissions
of NH3 owing to the NH3-poor regime in the PRD region. The PM2.5 sen-
sitivities to the emissions of SO2 and VOC were small and changed
slightly with the increase in reduction ratio, mainly attributed to low
emissions of SO2 (Xia et al., 2016) and underestimation of SOA in the
CMAQ, which is also a common issue for most widely used chemical
transport models (Robinson et al., 2007). However, the PM2.5 sensitivi-
ties to NOX emissions increased significantly with the increase in reduc-
tion ratio. For instance, PM2.5 sensitivities in SD and GZ transfered from
negative at low reduction ratios to positive at high reduction ratios. This
strong nonlinearity had also been confirmed by the previous studies
(Cai et al., 2017; Dong et al., 2014; Zhao et al., 2013; Zhao et al., 2015;
Zhao et al., 2017).

PM2.5 sensitivities to primary PM2.5 emissions were approximately
the same in different months. However, there were some differences
in PM2.5 sensitivities to emissions of precursors. In January, PM2.5 was
the most sensitive to NH3, followed by VOC. In April, July and October,
the relative contributions of NOX, SO2, and NH3 differred at various re-
duction ratios; and PM2.5 showed relatively less sensitive to VOC than
in January. In October, PM2.5 was more sensitive to VOC emissions
than in April and July andmore sensitive to SO2 emissions than in Janu-
ary. This wasmainly related to the formation mechanism of PM2.5 com-
ponents under different meteorological conditions. For example, dry air
and low temperature in January do not benefit to SO2 aqueous oxida-
tion, i.e., the formation of sulfate. It was noteworthy that even a very
large reduction ratio (75%) would lead to an increase for PM2.5 concen-
trations at SD, FS, and GZ in January if only NOX emissions within the



Fig. 6. Spatial distribution of the total contribution and the accumulative contribution of precursor emissions to 4-month mean PM2.5 solved by BFM and DM in the simultaneous 100%
reduction of precursor emissions (unit: μg m−3).
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PRD region were controlled, as a result of a strong VOC-limited regime.
To achieve PM2.5 reduction in January with the prevailing northeasterly
wind, it would be necessary to simultaneously reduce NOX emissions
from northern and eastern mainland of China outside the PRD region.
This is because NOX emission reductions in upwind regions are more
likely to result in a net PM2.5 decrease compared with local emission re-
ductions since the photochemistry typically changes from a VOC-
limited regime in local urban areas at the surface to a NOX-limited re-
gime in downwind areas or at upper levels (Xing et al., 2011). Therefore
there existed a phenomenon (shown in Fig. 7b) that the NOX emission
reductions can lead to PM2.5 decrease in downwind regions (ZS, JM,
DG&SZ) in January. In July, NOX emission reductions always induced a
decrease in PM2.5 due to an NOX-limited photochemical regime. The
contribution of SO2 emissions to PM2.5 sensitivities was larger than
that of NH3 and NOX at small reductions. With the increase in reduction
ratio, the contributions of SO2, NOX, and NH3 became closer.

3.4. Source contribution analysis of PM2.5

Employing DM and BFM for apportioning emission sources of pre-
cursors and primary PM2.5 respectively, we studied the emission contri-
butions of multiple pollutants from different regions and different
sectors to PM2.5 concentrations predicted by pf-ERSM-SL at receptors
in the control scenario where all pollutant emissions reduced by 100%.
In the process, we assumed that the contribution of precursor emissions
from each source region to the changes of PM2.5 at receptors caused by
IR can be estimated by its contribution to that caused by SR. After the
DM apportioning the contribution of each precursor, the contribution
of each sector of one precursor was obtained through the coefficient
weight deriving from the relationship between total precursor emis-
sions and sectoral ones (Eq. (5)).

Fig. 8 showed the contributions of pollutant emissions fromdifferent
regions and different sectors (7 source regions × 12 source sectors= 84
source categories in total) to 4-month mean PM2.5 at 6 receptors.
Table S6 listed the corresponding values. In the 100% control scenario,
the anthropogenic emissions contributed 24.21 μg m−3, 27.66 μg m−3,
28.26 μg m−3, 25.91 μg m−3, 25.70 μg m−3, 20.42 μg m−3 accumula-
tively to 4-monthmean PM2.5 at SD, FS, GZ, ZS, JM, DG&SZ, respectively.
First, the contributions of pollutant emissions from different regions (7
source regions) to 4-month mean PM2.5 at 6 receptors were analyzed.
The contributions of local emissions (i.e., emissions from the receptor)
at GZ and DG&SZ, 17.52 μg m−3 (62%) and 13.15 μg m−3 (64%) respec-
tively, were larger than that of regional emissions (i.e., emissions from
other 6 regions except the receptor), 10.74 μg m−3 (38%) and
6.27 μg m−3 (36%) respectively. This was mainly caused by the high
emissions intensity in local. However, local emissions contributed less
than regional ones at other receptors (SD, FS, ZS, JM). Among them,
SD was least affected by local emissions and most affected by regional
emissions; and they contributed 4.08 μg m−3 (17%) and 20.13 μg m−3

(83%), respectively. This is because SD located in the center of the
study domain with small areas. Generally, single-regional emissions
(0–29%), i.e., emissions from one of the other 6 regions, contributed
less than local emissions (39–64%) to 4-month mean PM2.5 at most re-
ceptors (FS, GZ, ZS, JM, DG&SZ); but emissions from GZ (33%) contrib-
uted more than local emissions (17%) at SD.

Secondly, the contributions of pollutant emissions from different
sectors (12 source sectors) to 4-month mean PM2.5 at 6 receptors
were discussed. It can be known that 4-month mean PM2.5 at 6 recep-
tors were contributed most by primary PM2.5 emissions (62–81%).
Among emissions of 4 precursors, the contributions of NH3 (9–18%)
were larger than that of other precursors (NOX, 2–12%; SO2, 5–6%;
VOC, 3–4%). Decomposed into various sectors, the primary PM2.5 emis-
sions from dust source (road dust and construction dust) were found to
make the largest contributions (25–42%), followed by that from other
sources, i.e., industrial process source, etc., contributing 14% to 29%.
The primary PM2.5 from stationary combustion and on-road mobile



Fig. 7. PM2.5 sensitivities of (a) 4-monthmean, (b) January, (c) April, (d) July, and (e) October to the stepped control of individual pollutant emissions from all regions. The x-axis showed
the reduction ratio (i.e., 1-emission ratio).
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source contributed less than that from dust source and other sources.
Among sub-sectors of precursor emissions, NH3 emitted from agricul-
ture source was generally the greatest contributor at most receptors
(FS, GZ, ZS, JM), accounting for 6–13%; but NH3 emitted from other
sources, i.e., residential source, etc., also contributed a lot (SD, 6%) or
evenmore than the former (DG&SZ, 9%). As for NOX emissions, the con-
tributions of stationary combustion source were more than that of the
other two sub-sectors, i.e., on-road mobile source and other sources. It
was mainly the consequence that the adverse effects of NOX emissions
from low-level sources owing to the reduction in consumption of
ozone by the titration of NO (Deng et al., 2018). Then SO2 emitted
from stationary combustion source and other sources, i.e., non-roadmo-
bile source, etc., contributed almost the same. The results were explain-
able. During China's 11th Five-Year Plan (FYP) (2006–2010) and 12th
FYP (2011–2015), the policies implemented to control on-road emis-
sions (e.g., replacing yellow-label vehicles and improving the quality
of diesel) and industrial emissions (e.g., the installation of flue-gas
desulfurization (FGD) equipment in the power sector and the imple-
mentation of new emission standards in key industrial sources) across
the PRD region have been quite useful for reducing SO2, NOX and pri-
mary PM2.5 emissions. Compared with on-road mobile source, emis-
sions from the non-road mobile source were less regulated but it had
been proved to be non-negligible. Although the related dust removal
and FGD equipment were widely installed in factories, the increase in
production output and the construction of new factories may offset
the effects of control measures in the industrial process source (Lu
et al., 2019). Additionally, the need for economic development has led
to a dramatical increase in construction activities over the PRD region
(Zhong et al., 2018). Moreover, it brought about more road dust that
the total possession of vehicles has consistently increased over these
10 years. As is well known, NH3 emissions are mainly from agriculture
activities. NH3 emissions have been regulated gradually in recent
years due to its critical effects on PM2.5. For instance, 80.1% of collectible
agricultural residue was used as fertilizer, feed, or transformed to clean



Fig. 8. Contributions of multiple pollutant emissions from different regions and different sectors to 4-month mean PM2.5 concentrations at 6 receptors. The numbers in the pie chart
showed the individual sector contributions. The numbers on the x-axis showed the individual region contributions.
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energy in China in 2015 (Wang et al., 2017a). However, as the central
and most developed region in Guangdong Province, the intensive
human activities of the PRD region led to more NH3 emissions from res-
idential source, such as the human body and cooking sources.

Then the contributions of different pollutants from different regions
and different sectors (84 source categories) to 4-month mean PM2.5

were further analyzed at 6 receptors. The local primary PM2.5 emissions
from dust source were naturally the most significant contributor to 4-
month mean PM2.5 at most receptors (FS, GZ, ZS, JM, DG&SZ), account-
ing for 14% to 33% of the total contribution. The largest contributor to 4-
month mean PM2.5 at SD was the primary PM2.5 emissions of dust
source fromGZ, accounting for 11% of the total contribution. The contri-
butions of NOX emissions from some regions (SD, FS, GZ) to 4-month
mean PM2.5 at some receptors (SD, FS, GZ, JM, DG&SZ) were negative,
most of which was brought by low-level sources. There were some dis-
crepancies between sectoral contributions of 6major regions and that of
OTH (including regions outside the PRD region) to receptors, such as
fewer contributions of primary PM2.5 from dust source andmore contri-
butions of NH3 from agriculture source, attributing to differences in eco-
nomic development.
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The seasonal features of source contributions were further studied.
SD, located in the center of the study domain (Fig. 2b), was chosen as
an example. The results were shown in Fig. 9 and the corresponding
values were listed in Table S7. The accumulative contributions of all
emissions to PM2.5 at SD were 28.30 μg m−3, 23.31 μg m−3,
13.03 μg m−3, 32.21 μg m−3 in January, April, July, and October respec-
tively. This was mainly related to the monthly mean PM2.5 concentra-
tions in the base case. The PM2.5 concentration level in July was the
lowest in 4 months, mainly because the weather conditions in summer
benefit to the dilution of pollutants. In contrast, meteorological condi-
tions, such as poor dispersion in fall andwinter, are often not conducive
to the removal of pollutants, attributing to high PM2.5 concentration
levels in October and January. However, spring is often a transmission
season. Hence, the PM2.5 concentration level in April was higher than
that in July but lower than that in October and January.

Weather condition was the main factor deciding the relative contri-
butions of different regions to PM2.5 at SD in different months. In Janu-
ary and October, the contributions of pollutant emissions from GZ
were much larger than those from other regions. This is because the
dominant wind is northeasterly in October and January, so the polluted
air-mass from GZ is blown down. In contrast, the prevailing southeast-
erly wind in July brings air-mass from ZS; thus, the pollutant emissions
from ZS are the biggest contributor in July. However, the predominant
wind direction can change in April. For example, thewindfield changed
from northeasterly in early spring to southwesterly in late spring (Lu
et al., 2009). Therefore, the contributions of pollutant emissions from
JM and ZS became a little larger, and that from GZ became a little
smaller. As for the contributions of different sectors to PM2.5 in different
months, the characteristic was approximately consistent with that to
the 4-month mean PM2.5 at SD.
Fig. 9. Contributions of multiple pollutant emissions from different regions and different sec
(d) October. The numbers on the x-axis showed the individual region contributions.
4. Conclusions, implications, and limitations

In this study, the innovative pf-ERSM-SL with DM and BFM was de-
veloped. The pf-ERSM-SL predictions showed good agreement with the
CMAQ simulations, and the DM was proved to be able to well address
the issue of BFM in overestimating the accumulative contribution of
precursor emissions to PM2.5.

Take the PRD region as a case, the sensitivities of PM2.5 to pollutant
emissions were first investigated. It was found that PM2.5 was much
more sensitive to the emissions of primary PM2.5 than that of precur-
sors. Among the precursors, PM2.5 was mainly sensitive to NH3 emis-
sions. With the increase in reduction ratio, the sensitivities of PM2.5 to
NOX emissions increased substantially. Furthermore, the emission con-
tributions of multiple pollutants from different sectors and multiple re-
gions to PM2.5 in the PRD region were quantified. The results
demonstrated that PM2.5 was generally dominated by local emission
sources (39–64%). Among all pollutants, primary PM2.5made the largest
contribution (62–81%) to PM2.5. The contributions of NH3 (9–18%)were
larger than that of other precursors (NOX, 2–12%; SO2, 5–6%; VOC,
3–4%). For different pollutants from various sectors, the primary PM2.5

emissions from dust source made the largest contribution (25–42%) to
PM2.5. TheNH3 emitted from agriculture sourcewas often themain con-
tributor (6–13%) among sub-sectors of precursor emissions. As for NOX

emissions, the contributions of stationary combustion source were
more than that of the other two sectors. For different pollutants from
various sectors and different regions, the local primary PM2.5 emissions
from dust source contributed most to PM2.5.

The source contribution analysis results can be used to support the
PM2.5 pollution control strategies in the PRD region. First, the local emis-
sions control strategies are pretty necessary for PM2.5 pollution
tors to monthly mean PM2.5 concentrations at SD in (a) January, (b) April, (c) July, and
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abatement. Second, the control of primary PM2.5 emissions should be a
priority in PM2.5 control strategies. The primary PM2.5 of dust source
should be the focus since its contribution exceeded that of on-roadmo-
bile source and stationary combustion source. Third, the control of agri-
culture source should be included for the reason that it dominated the
NH3 emissions. Fourth, the control of NOX emitted from stationary com-
bustion source should bemore stringent. In addition to city-scale coop-
eration, joint control for province-to-province NOX emissions is also
needed to further mitigate PM2.5 pollution in the PRD region.

The pf-ERSM-SL with DMmainly provides an effective and efficient
methodology for PM2.5 source contribution analysis, thereby it is theo-
retically applicable to different geographical conditions. The application
in other regions mainly limited by local emission inventory and meteo-
rology, which will be taken into consideration in photochemical air
quality models.

The pf-ERSM-SL with DM still has several limitations. First, the pf-
ERSM-SL inherited uncertainties in the CMAQ simulations and emission
inventory. Second, the pf-ERSM-SL currently was developed based on
base-casemeteorological conditionswithout consideration of themete-
orological variability. Third, the application of pf-ERSM-SL with DM
might be limited by computational resource consumption derived
from hundreds of simulations.
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